CTL* Complex Semantics
In this page, we try to understand the semantics of complex CTL* formulas.
It is easy to understand the semantics if you break the formulas down into subformulas.
{a,b}")) s1(("s1
{b,c}")) s2(("s2
{c}")) s3(("s3
{a,b}")) s4(("s4
{c}")) s5(("s5
{c}"))
\( M, s_0 \models \bm{EF} (b \land c) \)
Step.1: \( \bm{F} (b \land c) \)
\( \bm{F} (b \land c) \supseteq \{ \pi_0, \pi_1, \pi_2, \pi_0^1, \pi_1^1, \pi_2^1 ... \} \)
( This means \( \pi_0, \pi_1 \models \bm{F} (b \land c) \))
Step.2: \( \bm{E} \{ \pi_0, \pi_1 \} \)
\( \bm{E} \{ \pi_0, \pi_1, \pi_2 \} \supseteq \{ s_0 \} \)
( This means \( s_0 \models \bm{E} \{ \pi_0, \pi_1, \pi_2 \} \subseteq \bm{EF} (b \land c) \))
\( M, s_0 \models \bm{A} (b \bm{U} c) \)
Step.1: \( b \bm{U} c \)
\( b \bm{U} c \supseteq \{ \pi_0, \pi_1, \pi_2, \pi_3, \pi_0^1, \pi_1^1, \pi_2^1, \pi_3^1, ... \} \)
Step.2: \( \bm{A} \{ \pi_0, \pi_1, \pi_2, \pi_3 \} \)
\( \bm{A} \{ \pi_0, \pi_1, \pi_2, \pi_3 \} \supseteq \{ s_0 \} \)
\( M, s_0 \models \bm{EXEF} (b \land c) \)
Step.1: \( \bm{EF} (b \land c) \)
\( \bm{EF} (b \land c) \supseteq \{ s_0, s_1 \} \)
Step.2: \( \bm{EX} \{ s_1 \} \)
\( \bm {EX} \{ s_1 \} \supseteq \{ s_0 \} \)
\( M, s_0 \models \bm{AXA} (b \bm{U} c) \)
Step.1: \( \bm{A} (b \bm{U} c) \)
\( \bm{A} (b \bm{U} c) \supseteq \{ s_0, s_1, s_2 \} \)
Step.2: \( \bm{AX} \{ s_1, s_2 \} \)
\( \bm{AX} \{ s_1, s_2 \} \supseteq \{ s_0 \} \)
Question: \( s_0 \, ? \, \bm{EXAX} (a \land b) \)
Step.1: \( \bm{X} ( a \land b ) \)
\( \bm{X} (a \land b) \supseteq \{ \pi_0^1, \pi_1^1 \} \)Step.2: \( \bm{AX} (a \land b) \)
\( \bm{A} \{ \pi_0^1, \pi_1^1 \} \supseteq \{ \} \)Step.3: \( \bm{XAX} (a \land b) \)
\( \bm{X} \{ \} \supseteq \{ \} \)Step.4: \( \bm{EXAX} (a \land b) \)
\( \bm{E} \{ \} \supseteq \{ \} \)So, \( s_0 \not\models \bm{EXAX} (a \land b) \)